
8 The Delphi Magazine Issue 46

ActiveX Data Objects
by Guy Smith-Ferrier

ActiveX Data Objects (ADO) is a
set of ActiveX classes from

Microsoft for accessing data. As
such, ADO is a direct replacement
for the VCL data retrieval classes
and the BDE. In this article we’ll
look at how to get started with ADO
and how it compares with the BDE.

Since the 1980s vendors have
been offering solutions using a
single API to access multiple data
formats and engines. Microsoft’s
first try was ODBC. Borland were
adamant that ODBC wasn’t the
answer and IDAPI provided more
seamless access to both naviga-
tional and set-oriented database
engines. Both solutions used the
technology of the day, which was
function-based APIs in a DLL.

The world then moved upwards
and onwards into the world of
object oriented programming and
Borland placed class wrappers
around IDAPI in the form of
TSession, TDatabase, TTable, TQuery
and TStoredProc classes.

With the whole world going to
class-based solutions, and
Microsoft digging in their COM
heels, it was inevitable that
Microsoft would upgrade their
ODBC solution: OLE DB was born.
OLE DB is a set of over fifty COM
classes which are intended to
solve the same problems as ODBC
and more. However, as Microsoft
say in their own literature, OLE DB
is for ‘system programmers’ and
not ‘application programmers’. In
other words, OLE DB is so big, its
class hierarchy so rigid and so full
featured, that it is not for the faint
hearted. Enter ADO: Microsoft’s
replacement for DAO (Data Access
Objects). ADO is a layer of eleven

COM classes which sit on top of
OLE DB, simplifying the applica-
tion programmer’s task.

So why should you be interested
in ADO ? Perhaps the first reason is
that Inprise are taking it seriously
enough to include support for ADO
in Delphi 5. There is no official
statement (and therefore no guar-
antee) but Josh Dahlby (one of the
development team who worked on
MIDAS) has already let it slip in
newsgroups, and John Kaster,
Inprise’s Developer Relations
Manager (formerly the BDE Prod-
uct Manager), has already demon-
strated the ADO classes in
Australia and is expected to dem-
onstrate them in Holland in June.
The second reason is that ADO is a
free replacement for the BDE and, if
your application is COM based,
this is a much more intuitive
approach to database application
development. The third reason is
that RDA (Remote Data Access),
another Microsoft technology, is
an extension to ADO and is a free
alternative to MIDAS.

Getting ADO
So how do you get ADO? Well,
there’s a good probability you’ve
already got it. ADO 2.1 is included
with Internet Explorer 5, SQL
Server 7.0, SQL Server 6.5 SP5 and
Office 2000, and will be in Windows
2000. All future versions of Win-
dows will include the most recent
version of ADO. Previous versions
of ADO were included with Visual
Studio 6.0, Windows 98, Internet
Explorer 4.0, Windows NT4 Option
Pack, Visual InterDev and many
version 5 Microsoft programming
languages. Search for MSADO15.DLL

on your hard disk to check.
Alternatively you can down-

load ADO from Microsoft’s
website for free (www.microsoft.
com/data/mdac2.htm). The
redistributable version is 6.2Mb
but you should really download

the SDK instead at 37.8Mb, as it is
the best source of ADO and OLE DB
information.

ADO Classes
Figure 1 shows the ADO classes
and how they relate to each other.

The Connection class represents
a connection to a data source and
is analogous to a cross between a
TSession and a TDatabase. The
Recordset class is used for
non-parameterised queries and is
analogous to a TTable or a TQuery.
The Command class is used for
executing commands and stored
procedures, and opening param-
eterised queries, and is analogous
to TTable, TQuery.ExecSQL and
TStoredProc.

Getting Started
Like the equivalent Delphi classes,
many ADO features can be learned
on a ‘nice to know’ basis instead of
a ‘need to know’ basis. For exam-
ple, in Delphi programmers can get
started using TTable and TQuery
straight away without ever consid-
ering TDatabase or TSession. Delphi
creates TDatabase and TSession
classes as needed behind the
scenes when programmers don’t
provide them themselves. So you
can start using ADO Recordsets
immediately without having to
understand Connections.

As ADO is a set of automation
objects, we can use early vtable
binding, dispinterfaces or late
IDispatch binding. The arguments
for and against each approach are
the same for ADO as for any
automation object, that is, early
binding gives performance,
compile-time checking and the nui-
sance of having to specify all
parameters even when you want
the defaults, and late binding gives
ease of development.

For all of the examples in this
article early vtable binding is used,
so the type library needs to be
imported. To import the ADO type
library, use Project | Import Type
Library | Microsoft ActiveX Data
Library and add the resulting
ADODB_TLB.PAS to your uses
clause.

Listing 1 shows a piece of code
which opens the Suppliers table in

Connection

Errors

Error

Command

Parameters

Parameter

Recordset

Fields

Field ➤ Figure 1



10 The Delphi Magazine Issue 46

Northwind.MDB and displays the
second field of every record (fields
are numbered from 0) in a memo.

The code needs a little explana-
tion. CoRecordset.Create returns an
interface to a _Recordset COM
object using the CoRecordset proxy
class created when the ADO type
library was imported. Recordset.
Open takes five parameters and, as
we are using vtable binding via the
interface, we suffer the problems
of having to specify all five parame-
ters even when we want the
defaults. The first parameter is the
name of the table. An alternative is
to specify an SQL string, for
example SELECT * FROM SUPPLIERS.
The second parameter specifies
how to connect to the data source.
In this case it is a string indicating
the ODBC driver and the name of
the Access MDB file. The third
parameter is the cursor type. The
fourth parameter is the lock type
and the fifth specifies how the
source parameter (the first param-
eter) should be interpreted (as a
table name, a command text or a
stored procedure).

The remainder of the code
should be self-evident. Although
the method names are slightly dif-
ferent to what we are used to, the
intention is all very clear. Table 1
shows a complete listing of
Recordset methods with their
Delphi TDataSet equivalents.

Connections
In Listing 1 the second parameter
passed to Recordset.Open is a con-
nection string. When a Recordset is
used with a connection string it
automatically creates a Connection
object and assigns the string to the
Connection’s ConnectionString
property. ADO uses this technique
in several places to give a less rigid
approach to ADO than OLE DB
allows. However, you can still pass
a complete Connection object your-
self if you need greater control.
Again, this is similar to the way
Delphi allows programmers to
create their own TDatabaseobjects.

Listing 2 shows an example of
creating a Connection object
directly. The Connection object
used here is the simplest and
simply sets the data source name

➤ Above: Listing 1 ➤ Below: Table 1

Name Description Delphi Equivalent

AddNew Add a new record TDataset.Insert

Cancel Cancels a pending
asynchronous Open

CancelBatch Cancels a pending batch
update

CancelUpdate Cancels pending updates to
the current record

TDataset.Cancel

Clone Creates a duplicate
Recordset

Close Closes the Recordset TDataset.Close

CompareBookmarks Compares two bookmarks

Delete Deletes the current record
or group of records

TDataset.Delete

Find Search for a record TDataset.Locate

GetRows Retrieve multiple records
into an array

GetString Retrieve a Recordset as a
string

Move Moves the record pointer TDataset.MoveBy

MoveFirst Moves to the first record TDataset.First

MoveLast Moves to the last record TDataset.Last

MoveNext Moves to the next record TDataset.Next

MovePrevious Moves to the previous
record

TDataset.Prior

NextRecordset Moves to the next
recordset in a series of
commands

Open Opens the recordset TDataset.Open

Requery Re-executes the query TDataset.Refresh

Resync Refreshes the data TDataset.Refresh

Save Saves recordset to a file

Supports Determine whether the
record set supports a
particular functionality

Update Saves changes TDataset.Post

UpdateBatch Writes all pending changes

to GuysDSN. The first parameter to
Connection.Open is the connection
string, the second is the username,
the third is the password and the

fourth specifies additional connec-
tion information (such as whether
the connection should be made
asynchronously).

var RS: _RecordSet;
begin
RS:=CoRecordSet.Create;
RS.Open('Suppliers', 'Driver=Microsoft Access Driver (*.mdb);'+
'DBQ=C:\Program Files\Microsoft Office\Office\Samples\Northwind.MDB',
adOpenForwardOnly, adLockReadOnly, adCmdTable);

while not RS.EOF do begin
Memo1.Lines.Add(RS.Fields.Item[1].Value);
RS.MoveNext;

end;
RS.Close;

end;



14 The Delphi Magazine Issue 46

As mentioned earlier, Connection
objects have a lot in common with
TDatabase. Table 2 shows Connec-
tion methods and their Delphi
equivalents. As you can see, con-
verting from TDatabase’s transac-
tion processing to ADO’s doesn’t
take too much head scratching.

Exception Handling
Delphi traps ADO exceptions as
regular EOLEException objects.
Unfortunately, these exceptions
are not very forthcoming, so a little
more effort is required. Listing 3
shows a snippet of code which han-
dles an ADO exception using ADO’s
Errors and Error objects.

Properties Objects
Apart from the ‘hard coded’ prop-
erties found in all objects, ADO
supports ‘dynamic’ properties in
the form of Properties objects and
Property objects. Properties
objects are a collection of Property
objects. Command, Connection, Field,
Parameter and Recordset all have a
Properties property. The Prop-
erties collection contains a very
large amount of information about
the object in question. The actual
properties and their names
depend on the OLE DB Provider in

use, as different OLE DB Providers
offer different services. However,
typically there can be more than
eighty properties in all for a Con-
nection object. As such Properties
represents a way of bundling
together a whole host of informa-
tion without having to create
named properties in the interface
definition. Listing 4 shows a simple
FOR loop which adds all of the prop-
erties from a Connection object to a
TMemo.

However, a more typical
approach is to access Properties
by their name:

Label1.Text:=
Conn.Properties.Item[
‘Stored Procedures’].Value;

This is possible because the
parameter to Item is an OLEVariant
and can be an integer or a string.

Schema Information
The Connection class has a method
called OpenSchema which returns a
Recordset containing schema
information. The first parameter to
Connection.OpenSchema declares
the information type you want.
There are many schema informa-
tion types available including
tables, columns, indexes, check
constraints, primary keys and
stored procedures. The code in
Listing 5 shows how Recordset.
OpenSchema can be used to retrieve
the same information as TSession.
GetTableNames.

Asynchronous Processing
ADO 2.0 added support for asyn-
chronous processing for several
potentially lengthy operations.
The opening of a dataset is a typi-
cal example. By default, Open is syn-
chronous, but it is simply a matter
of passing adASyncFetch in the
Options parameter to open a table
asynchronously. As a result, exe-
cution of the program continues
immediately and the table is actu-
ally opened in the background.
Asynchronous operations have
two events: a Will event and a Com-
plete event. The Will event is fired
as soon as the processing starts
and the Complete event is fired
when the processing is complete.

At first sight this seems like an
excellent opportunity for better
performance as other tasks can be

var
Conn: _Connection;
RS: _RecordSet;

begin
Conn:=CoConnection.Create;
Conn.Open('DSN=GuysDSN', '', '', -1);
RS:=CoRecordSet.Create;
RS.Open('SELECT * FROM Animations', Conn, adOpenForwardOnly, adLockReadOnly,
adCmdText);

Memo1.Lines.Add(RS.Fields.Item[1].Value);
RS.Close;
Conn.Close;

end;

Name Description Delphi Equivalent

BeginTrans Begins a transaction TDatabase.StartTransaction

Cancel Cancels an asynchronous
Execute or Open

Close Closes a connection TDatabase.Close

CommitTrans Commits a transaction TDatabase.Commit

Execute Executes an
SQL statement

TQuery.Open, TQuery.ExecSQL,
TStoredProc.ExecProc

Open Opens a connection TDatabase.Open

OpenSchema Gets schema information TQuery on system tables

RollbackTrans Rolls back a transaction TDatabase.Rollback

➤ Table 2

try
RS.Open('SELECT * FROM DoesNotExist', Conn, adOpenForwardOnly, adLockReadOnly,
adCmdText);

RS.Close;
except
on E: EOLEException do
for intError:=0 to Conn.Errors.Count - 1 do
ShowMessage(Conn.Errors.Item[intError].Description);

end;

➤ Above: Listing 2 ➤ Below: Listing 3

for intProp:=0 to Conn.Properties.Count - 1 do
begin
Prop:=Conn.Properties.Item[intProp];
strValue:=Prop.Value;
Memo1.Lines.Add(Prop.Name+' = '+strValue);

end;

➤ Listing 4



June 1999 The Delphi Magazine 15

performed whilst the operation is
taking place. Certainly better per-
formance can be obtained in this
way, particularly by opening many
tables in parallel instead of in
serial. However, a little thought
should reveal that this very useful
feature doesn’t need to be a feature
of the database system as exactly
the same result can be achieved
using TThread and generating an
OnTerminate event when the pro-
cess is complete. It is much neater
having the process available as a
parameter passed to Open but this
just makes it more convenient.

Connection Pooling
ADO supports connection pooling
(without the need for MTS). The
default is that connection pooling
is on, so you have to explicitly turn
it off using a Connection if you don’t
want it. The connections can only
be reused when a compatible con-
nection is requested. In other
words, a connection made by one
user cannot be reused by a connec-
tion made by another user (this
makes sense because otherwise
you could circumvent security).

Using Command Objects
Command objects fulfil a number
of roles, including opening
datasets, executing SQL which

doesn’t return result sets, plus exe-
cuting parameterised queries and
stored procedures. In Listing 6 a
Command is being used to execute a
regular SQL SELECT statement.

What seems strange is that
Recordset has no Parameter objects
and therefore cannot execute
parameterised queries. Listing 7
shows a variation on Listing 6
which uses a parameterised query.

Remember that the convention
of using a full colon followed by a
name (for example :CUSTID) to
identify a parameter in an SQL
string is a BDE convention not an
SQL one.

Briefcase Model
In Delphi the briefcase model, or
Recordset Persistence as ADO
calls it, is achieved using
TClientDataSet.SaveToFile and
TClientDataSet.LoadFromFile. It is
all very neat and concise and it
works well, albeit using a Borland
proprietary format. The ADO
equivalents are Recordset.Save and
Recordset.Open. Saved records can
be loaded again using the
Recordset.Open method and speci-
fying Provider=MSPersist. In ADO
2.0 records are saved in a propri-
etary format called Advanced Data
TableGram (ADTG). In ADO 2.1
there is a choice of ADTG and XML

formats. In a future release HTML
will also be an option.

Third Party Products
There are two third party products
in the Delphi ADO market: Adonis
from Cybermagic Productions
(who are at www.cybermagic.
co.nz/adonis) and ADOSolutio
(yes, without an ‘n’ at the end) from
Lectum Information Technology
(at www.lectum.com). The prod-
ucts have fundamentally different
approaches and your choice is
more likely to be based on what
you think the best approach is to
ADO than their feature lists.

Adonis takes the approach that
as a Delphi programmer you want
a TDataSet descendant that looks
and acts like something you’re
already familiar with. As such
Adonis’s class list includes
TADODatabase, TADODataset, TADO
Query, TADORDataSet, TADOSchema,
TADOStoredProc, TADOTable, TADO
UpdateSQL and TRDSRemoteObject.

ADOSolutio takes the approach
that if you’re going to use ADO
then you want your classes to look
and act like ADO. As such ADO’s
class list includes IMADOConnection,
IMADODataSet, IMADOCommand, IMRDS
ClientDataSet and IMRDSDataSpace.

For my money if Delphi 5 really
does include ADO support then a
product bought today is likely to
be bought as a stop gap until the
built-in support arrives, or to sup-
port code in older versions of
Delphi. So you will probably want
your stop gap to be as much like
the Delphi 5 classes as possible.

Pros And Cons
So, should you make the leap from
the BDE to ADO ? Well, let’s exam-
ine the pros and cons.

On the up side ADO is a
Microsoft technology. As such it is
likely to be used by a much wider
audience than the BDE and have a
much greater impetus. Also as it is
a Microsoft technology it is not too
surprising that it is a COM technol-
ogy and COM is built into the oper-
ating system and is a widely used
and stable technology. In addition
ADO and RDS are free and, with
their introduction into every new
release from Microsoft, they will

var
Conn: _Connection;
RS: _RecordSet;

begin
Conn:=CoConnection.Create;
Conn.Open('DSN=GuysDSN', '', '', -1);
RS:=Conn.OpenSchema(adSchemaTables, EmptyParam, EmptyParam);
while not RS.EOF do begin
Memo1.Lines.Add(RS.Fields.Item['TABLE_NAME'].Value);
RS.MoveNext;

end;
RS.Close;
Conn.Close;

end;

var
Conn: _Connection;
Command: _Command;
RS: _RecordSet;
RecordsAffected: OLEVariant;

begin
Conn:=CoConnection.Create;
Conn.Open('DSN=GuysDSN', '', '', -1);
Command:=CoCommand.Create;
Command.Set_ActiveConnection(Conn);
Command.CommandText:='SELECT * FROM Suppliers';
Command.CommandType:=adCmdText;
RS:=Command.Execute(RecordsAffected, EmptyParam, -1);
while not RS.EOF do begin
Memo1.Lines.Add(RS.Fields.Item[1].Value);
RS.MoveNext;

end;
RS.Close;
Conn.Close;

end;

➤ Above: Listing 5 ➤ Below: Listing 6



16 The Delphi Magazine Issue 46

soon be installed on every Win-
dows PC. As mentioned earlier
ADO is based on OLE DB which
provides access to a range of data
sources including databases,
spreadsheets and HTML. Finally,
as RDS is free and represents a way
of creating n-tier database applica-
tions, it is an alternative to MIDAS.

On the down side ADO is a
Microsoft technology... To some
this means ‘Microsoft lock-in’.
Also, as it is based on COM, it is a
bitter pill to swallow if your com-
pany has already committed to
CORBA. You can have both COM
and CORBA in the same applica-
tion but it is a little contradictory
and doesn’t sit well with develop-
ers, managers or customers. Fur-
thermore ADO must be installed on
the client machine (even if you use
RDS for n-tier applications). ADO
certainly isn’t small, but you could
argue that if it’s already on the
user’s PC there is no additional
space requirement.

Another cause for concern is
ADO’s lack of support for all things
non-Microsoft. The get out clause

is that ADO is based on OLE DB
which uses its own ODBC provider
by default, so if you have an ODBC
driver then you have support.
However, if your database is
InterBase and you’re used to the
level of control given by FreeIB-
Components, then the ODBC
driver just doesn’t cut it. More wor-
ryingly, consider the Oracle OLE
DB provider, written by Microsoft.
It seems unlikely that Oracle will
write their own OLE DB provider as
they offer Oracle Objects For OLE
(OO4O) and they say OO4O has
features which are unique to it and
are ‘cumbersome or inefficient to
use from other ODBC or OLE
DB-based components such as
ADO’. So if you are using Oracle
and ADO you need to consider how
responsive Microsoft will be when
Oracle 9 comes out with features
that OLE DB hasn’t anticipated.

Conclusion
Although ADO is a relatively new
technology it is based on a more
mature foundation which is ulti-
mately based on COM. As a BDE
replacement it has advantages and
pitfalls. However, Microsoft’s
attempts to ensure that ADO is on
every PC in the near future, and
Borland’s possible support for
ADO in Delphi 5, make it a technol-
ogy worth watching.

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd., a training company specialis-
ing in Delphi, Visual Basic and
Visual FoxPro. He can be
contacted at gsmithferrier@
EnterpriseL.com

➤ Listing 7

Command:=CoCommand.Create;
Command.Set_ActiveConnection(Conn);
Parameter:=Command.CreateParameter('PCOUNTRY', adBStr, adParamInput, 2, 'UK');
Command.Parameters.Append(Parameter);
Command.CommandText:='SELECT * FROM Suppliers WHERE COUNTRY=?';
Command.CommandType:=adCmdText;
RS:=Command.Execute(RecordsAffected, EmptyParam, -1);


	Getting ADO
	ADO Classes
	Getting Started
	Connections
	Exception Handling
	Properties Objects
	Schema Information
	Asynchronous Processing
	Connection Pooling
	Using Command Objects
	Briefcase Model
	Third Party Products
	Pros And Cons
	Conclusion

